Programme de colles n°11

Chapitre M31: Statique des fluides

Chapitre M72: Cinématique des fluides

Chapitre M73: Étude phénoménologique des fluides

Chapitre M34: Équations locales de la dynamique des

<u>écoulements parfaits</u>

I. Équation d'Euler.

- 1. Expression.
- 2. Remarques.
- 3. Théorème.

II. Théorèmes de Bernoulli.

- 1. Généralités.
- 2. Cas d'un écoulement parfait stationnaire, incompressible et homogène.
- 3. Cas d'un écoulement parfait stationnaire, incompressible, homogène et irrotationnel.
- 4. Exercices
 - a. Cas d'un écoulement parfait non stationnaire, incompressible et homogène.
 - b. Cas d'un écoulement parfait stationnaire, compressible.

III. Formule de Torricelli, application à une vidange.

- 1. Hypothèses.
- 2. Théorème de Torricelli.
- 3. Remarques.
- 4. Vidange d'un récipient cylindrique.

IV. Application des théorèmes de Bernoulli.

- 1. Diamètre d'un jet vertical.
- 2. Effet Venturi.
 - a. Définition.
 - b. Applications.
 - (1) Débitmètre.
 - (2) Trompe à eau.
- 3. Tube de Pitot.
- 4. Résultante des forces sur un cylindre.
 - Résultante des forces de pression.
 - b. Interprétation.

V. Aspect qualitatif.

- 1. Effet Magnus.
- 2. Portance des ailes d'avion.

VI. Effets de la force de Coriolis sur les vents.

- 1. Rappels et hypothèses.
- 2. Alizés.
- 3. Vents géostrophiques.